ERA UNIVERSITY, LUCKNOW STUDY & EVALUATION SCHEME (Effective from Session 2024-25) M.Sc. BIOTECHNOLOGY YEAR I, SEMESTER – I

S. No	Course category	Course code	Course title	H	ours/	week	EV	ALUAT	ION SCHEN	ΛE	СТ	С			At	tribu	ites		
•				L	Т	Р	Mid Sem Exam	TA	Total	End Sem Exam			Employability	Entrepreneurship	Skill Development	Gender	Environment Sustainability	Human values	Professional Ethics
THE	ORY							-				-							
1.	Major Own Faculty	MBT0101T	Biochemistry & Metabolism	3	1	0	20	20	40	60	100	4	V						
2.	Major Own Faculty	MBT0102T	Biophysical Techniques	3	1	0	20	20	40	60	100	4	\checkmark	\checkmark	\checkmark		\checkmark		
3.	Major Own Faculty	MBT0103T	Cell Biology	3	1	0	20	20	40	60	100	4	\checkmark						
4.	Major Own Faculty	MBT0104T	Molecular Biology	3	1	0	20	20	40	60	100	4	\checkmark		\checkmark		\checkmark		
5.	Major Own Faculty	MBT0105T	Microbiology	3	1	0	20	20	40	60	100	4	\checkmark				\checkmark		
							PRACTIC	CALS											
6.	Major Own Faculty	MBT0106P	Laboratory Course I (Biochemistry + Cell Biology + Molecular Biology + Microbiology)	0	0	8	20	20	40	60	100	4	V	\checkmark			\checkmark		
		Total									600	24							
		L-Lecture	T- Tutorial	P	- Pra	actical		C-	Credit	Т	A- Teacl	ner A	ssess	men	t				

CT- Course Total

Course Nam	e: Biochemistry & Metabolism	Course Code: N	/IBT0101T	Year: I	Semester: I		
		Core Course			•		
Credits: 4	Total No. of Lectures: 60 L	ecture-Tutorial-P	Practical (In	hours/week	x) L-T-P: 3-1-0		
Evaluation	Internal Continuous	40	End Term	Exam	60		
Spread	• The objective of the paper is to gein fundamental travuladae about estabeliar						
Objective	anabolism, regulation of metabolism and pathway analysis.						
Ū	• Obtain knowledge and	understanding of l	how enzym	es and meta	bolites in living		
	system work to generate e	energy and synthes	ize different	biomolecule	es.		
	• The interrelation of eac	h of these metabo	olic pathwa	ys and their	r contribution in		
	• The application of the know	rs. Swledge generated	in the practi	cal aspects o	of Biotechnology		
Course	CO1: Students will be gaining	in-depth knowled	lge about th	e structure a	and properties of		
Outcome	various biomolecules in	cluding carbohyd	rates, amine	o acids, pro	teins, lipids and		
	nucleic acids.			_	-		
	CO2: Students will be explorin	ng the different as	pects of bio	chemical re	actions including		
	various classes of enzym	of reactions, differences regulatory step	s enzyme re	s of pioche	emical reactions,		
	CO3: Students will be able to u	inderstand major n	netabolic pa	thways of bi	omolecules, their		
	energetic and regulatory aspects and associated metabolic disorders.						
Pedagogy	Interactive, Discussion Based Sessions, Presentations, Seminars						
Internal	Sessional Test: 20	Sessional Test: 20					
Evaluation	Quiz: 5						
Mode	Assignments: 5						
	Presentations: 5						
Unit		Торіс			No. of		
		-			Lectures		
		1 6 4	<u> </u>	1 1 1 4	Total = 60		
I	Structure and properties of mor	and functions of one of the observed and polys	t simple c accharides:	arbonydrates Structure an	; 12 d		
	functions of mucopolysacchar	ides, peptidoglyca	ns, Hyaluro	nic acid, an	d		
	heparin.		•				
	Carbohydrate catabolism: Glyd	colytic pathway,	Fricarboxyli	c acid cycle			
	Gluconeogenesis, Hexose mo	onophosphate path	way, glyco w productic	ogenesis an	a		
	and anaerobic respiration: org	anization of respi	ratory elect	ron transpor	t		
	system, mechanism of oxidative	e phosphorylation,	CO_2 assimil	ation.			
II	Amino acids-Physicochemical	properties of	amino acio	ds; proteins	- 12		
	classification, structures size,	shape, structura	l organizati	ion proteins	-		
	model) structure of proteins pro	and quaternary (tein folding	inyogiobin,	nemogiobi			
	Transamination, deamination ar	nd decarboxylation	reactions; N	/letabolism o	f		
	aromatic amino acids; formation	n of ammonia and	urea; nitroge	en fixation b	у		
	bacteria; inborn errors of metab	olism-phenylketon	uria, alcapto	onuria, Mapl	e		
	syrup urine disease, sickle cell	anemia, galactosu	iria, glutaric	acıduria typ	e		
III	Fatty acids: general formula no	menclature and ph	vsicochemic	al properties	: 12		
	lipid classification: simple. co	mplex: general st	tructure and	l function of	f		

	major lipid sub-classes - acyl glycerols, phosphoglycerides, phospholipids, sphingolipids, and steroids. Waxes, circulating lipids- chylomicrons, HDL, LDL and VLDL. Biosynthesis, degradation and regulation of saturated fatty acid, oxidation of unsaturated fatty acid and synthesis of UFA by enzymatic (prostaglandin and leukotrines) and non-enzymatic (free radicals and lipid peroxidation) mechanisms, cholesterol and ketone body metabolism and regulation, synthesis of triacylglycerol, phospholipids and sphingolipids.				
IV	Structure of purines, pyrimidines, nucleosides and nucleotides; Physical &	12			
	biochemical properties of DNA; Types of DNA: A, B and Z DNA, their				
	structure and significance; Physical & biochemical properties of RINA:				
	tRINA, rRINA, mRINA and nnRINA; Primary, secondary, and tertiary				
	structures of RINA.				
	Metabolism of purines and pyrimidines; Disorders of purines and				
X 7	Secondary metabolismi Termonos (seconitermonos, corretencido), allealoido	10			
v	secondary metadonism. Terpenes (sesquiterpenes, carotenoids), arkarolds,	12			
	secondary metabolites				
	Bioenergetics free energy change in biological transformation				
	thermodynamic principles in biology redoy potential high energy				
	compounds.				
Suggested R	Compounds.				
Suggested N	Suggesteu Reaunigs				
1 Principles of Biochemistry Lehninger A L 1993 C B S India					

- Principles of Biochemistry, Lehninger. A. L. 1993. C.B.S., India.
 Biochemistry, Voet D. & J. Voet. 1995. 2ndEdn. 1995. John Wiley and Sons, USA.
- Biochemistry, Berg, J. M., L. J. Tymcozco and Stryer 2002. 5thEdn. W. H. Freeman and Company, New York.
- 4. Biochemistry, Garrett and Girisham, 2010, Cengage Learning.
- 5. Harper's Biochemistry, Murray, R.K., D.K. Granner, P.A. Mayes and V.W. Rodwell. 2002. McGraw Hill Publishing Company, New Delhi.
- 6. Text Book of Biochemistry-West, Todd, Mason, Bruggen-Amerind Publishing Co. Pvt., Ltd.

UNIT	MAPPED CO
Ι	CO1, CO2
II	CO1, CO2, CO3
III	CO1, CO2, CO3
IV	CO1, CO2, CO3
V	CO1, CO2

MAPPED CO's WITH PO's & PSO's

	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4
CO1	\checkmark								
CO2	\checkmark								
CO3									

Course Created by:

Course Nam	e: Biophysical Techniques	Course Code: MBT0102T Year: I			Semester: I		
	I	Core Course					
Credits: 4	Total No. of Lectures: 60	Lecture-Tutorial-P	ractical	(In hours/w	eek) L-T-P: 3-1-0		
Evaluation Spread	Internal Continuous	40	End Te	erm Exam	60		
Course Objective	 Students will demonstrational biophysical techniques techniques used in reseat To gain knowledge at techniques 	 Students will demonstrate a core knowledge base in the theory and practice of modern biophysical techniques to make the students conversant about the various tools & techniques used in research laboratories, industries and diagnostics. To gain knowledge about operative procedures, and applications of the various 					
Course Outcome Pedagogy Internal	 CO1: Enable the student to get sufficient knowledge in principles and applications of bio-instruments. CO2: Student would be able to understand the different types of spectroscopic techniques. CO3: Student would be able to describe the basic principle, technique and applications of different type of chromatographic techniques like paper, ion exchange and affinity chromatography. CO4: Student would gain knowledge regarding fundamental principles behind centrifugation and electrophoresis. CO5: Student would be able to get thorough knowledge of ESR, NMR and various principles and instrumentation. CO6: Student would understand the principles and applications of different types of microscopy. 						
Evaluation Mode	Sessional Test: 20 Quiz: 5 Assignments: 5 Attendance: 5 Presentations: 5						
Unit		Торіс			No. of Lectures Total = 60		
I	Microscopy Principles and application of phase contrast, fluorescent transmission electron micro cytometry.	of light, dark and bace Electron Micro roscopy), staining a	right fiel scopy (nd fixat	ld microscop (scanning a ion and flo	12 py, nd pw		
П	Cytometry.12Centrifugation Techniques12Basic principles of sedimentation, types of centrifuges and rotors, Preparative ultracentrifugation-differential centrifugation, Density- gradient analytical ultracentrifugation						
III	Spectroscopy Simple theory of absorption absorbance, transmittance, monochromatic, visible spect photometer, atomic absorption spectrometry, Mass, MALDI	gradient, analytical ultracentrifugation.12Spectroscopy12Simple theory of absorption of light molecules, Beer-Lambert law, absorbance, transmittance, extinction coefficient, light sources, monochromatic, visible spectrophotometer, infrared spectroscopy, flame photometer, atomic absorption, plasma emission, ESR and NMR cmattering spectrophyticscmasterMAL DLTOEESLMS and X ray Crustella spectrue					
IV	Chromatographic methods General principles, TLC and filtration, Affinity, High-per	d Paper chromatogra formance liquid chro	phy, Ion omatogra	exchange, g	gel 12 le,		

	instrumentation, practical procedure and applications of gas						
	chromatography techniques.						
	Radioisotope techniques- Basic concepts, GM and scintillation counter,						
	autoradiography, RIA, applications in biological science.						
V	Electrophoresis 12						
	General principles, horizontal & vertical gel electrophoresis, Agarose,						
	native PAGE SDS PAGE capillary electrophoresis isoelectric focusing						
	2D gel Pulse-field gel electrophoresis: principle methodology and						
	applications in separation of large DNA fragments						
	applications in separation of large D1/4 fragments.						
	Blotting Techniques: Southern Blotting, Northern Blotting and Western						
	Blotting.						
Suggested R	leadings						

- 1 Keith Wilson John Walker John M. Walker "Principles and Techniques of Practical Biochemistry"
- 2 Joseph Sambrook David W. Russell Joe Sambrook "Molecular Cloning: A Laboratory Manual"
- 3 William M., Ph, D. O'Leary Robert Dony Wu" Practical Handbook of Microbiology"
- 4 Brown, TA "Gene cloning: An introduction" Biochemistry, 2nd ed. Edward Arnold.
- 5 W.W Umbrit and R.H. Burris. Manometer and biochemical techniques.

UNIT	MAPPED CO
Ι	CO1 & CO6
II	CO1 & CO4
III	CO1, CO2 & CO5
IV	CO1 & CO3
V	CO1 & CO4

MAPPED CO's WITH PO's & PSO's

	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4
CO1									
CO2									
CO3						$$			
CO4									
CO5									
CO6									

Course Created by:

Course Nam	e: Cell Biology	Course Code: MBT010	3T Year: I	Semester: I	
		Core Course			
Credits: 4	Total No. of Lectures	: 60 Lecture-Tutoria	l-Practical (In hou	rs/week) L-T-P: 3-1-0	
Evaluation Spread	Internal Continuous	40	End Term Exam	60	
Course Objective	This course covers the structure, functions, and processes of cells, as well as the signaling pathways involved in growth and development. The course also combines cellular function with the application of technology and molecular genetics, allowing students to investigate and develop new research opportunities for the greatest benefit of humanity.				
Course Outcome	 CO1: Student will understand nature of bio-membrane and function. CO2: Students will understand molecular localization of protein from translation modification to translocation. CO3: Students will understand the cell signaling pathway involve in cellular mechanisms. CO4: Students will understand cytoskeleton structure, function and cellular communication of different cell junction. CO5: Students will understand cell cycle mechanism and Molecular basis of cancer, its regulation and key events 				
Pedagogy	Interactive, Discussion	Based Sessions, Presenta	ations, Seminars		
Internal Evaluation Mode	Sessional Test: 20 Quiz: 5 Assignments: 5 Attendance: 5 Presentations: 5				
Unit		Торіс		No. of Lectures Total = 60	
Ι	Discovery of cell, cell of eukaryotic cell. S eukaryotic cell; ultra- organization and func peroxysome; Nucleu organization of chrom import of proteins. Endoplasmic reticulu membrane proteins an and lysosomal pr Glycosylation of prote	theory, prokaryotes and e structural organization of structure of animal and structure of cell wall, cell m as: components, nucle natin nucleosomes, chron Mitochondria: struc m: signal peptide hypo nd glycosylation. Golgi oteins. Plastids; vac ins.	eukaryotes, evolution f virus, bacteria and plant cell. Structura nembrane, lysosome ar pore complex nosomes, export and cture & functions othesis, insertion of complex: secretor uoles; chloroplas	10 10 10 10 10 10 10 10 10 10 10 10 10 1	
Π	Membrane Transport transport; Types of ca (Na ⁺ and K ⁺ pump, Ca membrane transport molecules between m cellular organelles (H vesicular traffic: Tra assembly; Transport Molecular basis of end	t mechanisms: Princip arrier proteins and active a ⁺⁺ pump, H ⁺ pump); Ion proteins. Protein sor acleus and cytosol; Tran ER, Mitochondria, Chlor ansport vehicles, SNA from ER to Golgi and locytosis and exocytosis.	oles of membran membrane transpor channels - Family of ting: Transport of sport of proteins to roplast et c). Intra REs, Clathrin coa then to lysosomes	e 12 rt f f o t ;;	
III	Cellular Communicati and their binding me signaling pathways: G system, Enzyme-linke	on: Types of extra cellu echanisms. Intracellular -protein linked cell surfa d cell surface receptors; S	lar signal molecule signaling. Types of ce receptor mediate ignaling in plants.	s 14 f d	

	Molecular Motors: Molecular motor protein super family;					
	Movement of myosin along actin filaments; Movement of Kinesin					
	and Dynein along microtubules.					
	Cell Junctions: Types, molecular basis and functions. Cell-Cell					
	adhesion - Cadherins, Selectins, their mechanisms and functions.					
	ECM: Glycosaminoglycans (GAG), Collagens, Elastin, Fibronectin,					
	Basal- lamina, their structure and functions.					
IV	Phases of cell cycle. Regulation of cell cycle: Discovery of MPF, 12					
	cyclins and cyclin dependent kinases, Check points- role of Rb and					
	p53. Apoptosis: Neurotrophic factors, caspases, Pathways of					
	apoptosis, Regulation of Programmed Cell Death. Therapeutic					
	interventions of uncontrolled cell growth.					
V	Cancer: Types and stages. Oncogene, tumor suppressor gene,	12				
	oncogenic mutation. Molecular basis of cancer, virus induced					
	cancer, metastasis, and interaction of cancer cells with normal cells.					
	Cell senescence.					
Suggested R	eadings					
1 1 1 1.1.	$-1 + D^{1} + 1 + 2 + 2 + C^{1} + C^{1} + 1 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2$					

- 1. Molecular Biology of the Cell-Alberts et al
- 2. Molecular Cell Biology-Lodishet al
- 3. Cooper, G. M., & Hausman, R. E. (2013). The Cell: A Molecular Approach.
- 4. Baltimore "Molecular Cell Biology".

UNIT	MAPPED CO
Ι	CO1
II	CO2
III	CO3
IV	CO4
V	CO5

MAPPED CO's WITH PO's & PSO'

	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4
CO1	\checkmark	\checkmark	\checkmark						
CO2	\checkmark	\checkmark	\checkmark						
CO3	\checkmark	\checkmark	\checkmark						
CO4			\checkmark						
CO5	\checkmark	\checkmark	\checkmark						

Course Created by:

Core Course										
3-1-0										
ng of										
the facts and basic concepts of molecular biology. They should be capable of displaying a good knowledge base in biological concepts and be able to integrate knowledge with										
good knowledge base in biological concepts and be able to integrate knowledge with critical thinking skills to become problem solvers.										
CO2: Lead to independent learning of advanced molecular biology concepts CO3: Students wouldgain higher level thinking skills that is necessary for research										
Assignments: 5										
of										
res										
= 60										

Suggested Readings

- 1. Alberts B., Bray D., Lewis J., Raff M., Roberts K., Watson J., Molecular Biology of the Cell, 5th edition, 2008, Garland science publication
- 2. Robertis & Robertis, Cell & Molecular Biology, 8th edn, 2001, WottersKlwer-
- 3. Brown T.A., Genomes 3, 2007, Garland science.
- 4. Lodish, H.F., Lodish, B., Berk, A., Darnell, J.E., Zipursky, S.L., Baltimore, D., Matsudaira, P., Molecular Cell biology, 6th edn, 2007, WH Freeman
- 5. J. D. Watson, T. A. Baker, S. P. Bell, A. Gann, M. Levine, R. Losick, Molecular Biology of the Gene, 5th edn. (2004), Pearson Education Inc.
- 6. Karp, G. 1999 Cells and Molecular Biology; Concepts and Experiments. John Wiley & Sons, Inc., USA.
- 7. Wolf, S. L. 1993. Molecular and Cellular Biology, Wadsworth Publishing Co., California, USA.

UNIT	MAPPED CO
Ι	CO1, CO2, CO3
II	CO1, CO2, CO3
III	CO1, CO2, CO3
IV	CO1, CO2, CO3
V	CO1, CO2, CO3

MAPPED CO's WITH PO's & PSO's

	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4
CO1									
CO2									
CO3									

Course Created by:

Course Nan	ne: Microbiology	Course Code: MBT	го105Т	Year: I	Semester: I				
		Core Course							
Credits: 4	Total No. of Lectures: 60 L	ecture-Tutorial-Pra	ctical (I	n hours/week)	L-T-P: 3-1-0				
Evaluation Spread	Internal Continuous	40	End To	erm Exam	60				
Course	This paper provides deeper insi	ght into microbiology	/ v which i	includes the stu	dy of all small				
Objective	living organisms which are not	visible to naked eve	s such a	s bacteria, viru	s. fungi which				
5	are collectively known as m	icroorganisms. This	paper	also consists	knowledge of				
	techniques which will used	for microbial ident	ification	such as sta	ining, culture,				
	sterilization, their genetics and	applications.							
Course	CO1: The course will provide knowledge to understand the basic microbial structure and function								
Outcome	function.								
	CO2: Students will be able to describe the importance of microorganisms.								
	CO3: Students will gain knowledge about microbiology and its role in the field of medical, environmental, and agriculture industries.								
	CO4: The student will be able to identify common infectious agents and the diseases that								
	they cause.								
	CO5: The course will provide	e knowledge to unde	erstand t	he methods us	sed to identify				
	infectious agents in the c	linical microbiology l	aborator	у.					
Pedagogy	Interactive, Discussion Based Sessions, Presentations, Seminars								
Internal	Sessional Test: 20								
Evaluation	Quiz: 5								
Mode	Assignments: 5								
	Attendance: 5								
T T . •4	Presentations: 5	T			NT. C				
Unit		Горіс			No. 01 Lectures Total – 60				
I	Unit I: History and Scope of N	Aicrobiology			$\frac{10000}{12}$				
	Introduction, history and d	levelopments of m	icrobiol	ogy, general					
	characteristics of prokaryotes	and eukaryotes. Spo	ontaneou	s Generation,					
	Germ theory of disease, Koc	h's postulates, Micro	oorganis	ms and their					
	types- morphology and classifi	cation (Bacteria, viru	ises, fun	gi, algae, and					
	protozoans). Archaebacteria,	Mycoplasma. Mi	crobes	in extreme					
	Halophiles and Piezophiles): M	alkalophiles, actuop	onnes, F	sychrophies,					
II	Control of microorganisms ar	nd microbial interact	tions:		12				
	Concept of sterilization and dis	sinfection; Types of p	ohysical	and chemical					
	methods of sterilization. Mode	of action of antibiot	ics: Narr	ow and broad					
	spectrum (Penicillin, ampicillir	n), antifungals (clotrin	mazole),	antiretroviral					
	(tenofovi). Microbial in	nteractions: Mut	ualism,	symbiosis,					
	commensalisms, predation, pa	rasitism and amensa	alism. S	ymbiosis and					
	antibiosis among microbial pop	pulation. Microflora	of soil a	ind its role in					
Ш	Microbial genetics				12				
111	Basics of microbial genetics	: Molecular classif	ication	of microbes.	14				
	Plasmid DNA and its types,	Prokaryotic replicati	on, tran	scription and					
	translation; Recombination in	Prokaryotes: Transfo	ormation,	Conjugation					

	and Transduction; Bacteriophage (Lytic and lysogenic cycle).	
IV	Clinical microbiology	12
	Introduction of medical microbiology, Diseases caused by pathogenic	
	microorganisms; bacteria, mycoplasma, fungi, and virus. Emerging and	
	resurgent infectious diseases. Antimicrobial resistance and Superbugs.	
	Biotechnological methods in management of microbial diseases.	
	The normal microflora of the Skin, Oral cavity, and Gastrointestinal tract	
	of the human body.	
\mathbf{V}	Technological advances in microbiology	12
V	Technological advances in microbiology Cleaning oil spills, Bioleaching, Bioremediation, Biodegradable plastics,	12
V	Technological advances in microbiology Cleaning oil spills, Bioleaching, Bioremediation, Biodegradable plastics, Biofuels/Biodiesel, Biopesticides, Biofertilizers and Vermitechnology.	12
V	Technological advances in microbiology Cleaning oil spills, Bioleaching, Bioremediation, Biodegradable plastics, Biofuels/Biodiesel, Biopesticides, Biofertilizers and Vermitechnology. Bacterial Quorum Sensing, Microbial fuel cells. Prebiotics and Probiotics.	12
V Suggested R	Technological advances in microbiology Cleaning oil spills, Bioleaching, Bioremediation, Biodegradable plastics, Biofuels/Biodiesel, Biopesticides, Biofertilizers and Vermitechnology. Bacterial Quorum Sensing, Microbial fuel cells. Prebiotics and Probiotics. Readings	12
V Suggested R 1. Micro	Technological advances in microbiology Cleaning oil spills, Bioleaching, Bioremediation, Biodegradable plastics, Biofuels/Biodiesel, Biopesticides, Biofertilizers and Vermitechnology. Bacterial Quorum Sensing, Microbial fuel cells. Prebiotics and Probiotics. Readings obiology, M.J. Pelczar, E.C.S. Chan and N.R. Kreig, Tata McGraw Hill.	12
V Suggested R 1. Micro 2. Gene	Technological advances in microbiology Cleaning oil spills, Bioleaching, Bioremediation, Biodegradable plastics, Biofuels/Biodiesel, Biopesticides, Biofertilizers and Vermitechnology. Bacterial Quorum Sensing, Microbial fuel cells. Prebiotics and Probiotics. Readings obiology, M.J. Pelczar, E.C.S. Chan and N.R. Kreig, Tata McGraw Hill. ral Microbiology, R.Y. Stanier, J.L. Ingraham, M. L. Wheelis and P.R. Painte	12 r, Macmillian.

- Industrial Microbiology Prescott and Dunn's; G Reed; CBS Publishers.
 The microbes An Introduction to their Nature and Importance, P.V. Vandenmark and B.L. Batzing Benjamin Cummings.
- 5. The Microbial World, Roger Y. Stanier, Prentice Hall.
- 6. Microbiology, Tortora, Funke and Chase, Benzamin & Cummings.

UNIT	MAPPED CO
Ι	CO1, CO3
II	CO1, CO3
III	CO1, CO3
IV	CO1, CO2, CO3, CO4
V	CO1, CO4, CO5

MAPPED CO's WITH PO's & PSO's

	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4
CO1									
CO2									
CO3									
CO4									
CO5					$$				

Course Created by:

Course Name: Laboratory Course I Course Code: MBT0106P Year: I S									
(Biochemistr	y + Cell Biology +								
Molecular Bi	ology + Microbiology)								
		Core Course							
Credits: 4	Total No. of Lectures: N	IL Lecture-Tutorial-	Practical (in hours/we	ek) L-T-P: 0-0-8					
Evaluation Spread	Internal Continuous	40	End Term Exam	60					
Course Objective	The objective of this laboratory course is to introduce students to experiments in Biochemistry, cell & molecular biology and microbiology. The course is designed to teach students the utility of set of experimental methods in biotechnology in a problem-oriented manner.								
Course Outcome	 CO1: Student should be able to understand the fundamental aspects of these techniques in biological phenomenon CO2: Ability to apply these practical knowledge and experience in biotech industries. CO3: Ability to conduct fundamental and applied research in the field of biology 								
Pedagogy	gy Interactive, Discussion Based Sessions, Practical's								
Internal Evaluation Mode	n Sessional Test: 20 N Viva: 10 Attendance: 5 Lab Record: 5								
		Торіс							
1. BIO	CHEMISTRY:			(30HRS)					
2. Quali	tative tests of carbohydrate	s: Molisch's test, Fehli	ng's test; Benedict's te	est; Barfoed's test;					
Seliw	anoff's test; Iodine test.								
3. Qualı	tative tests of proteins: Pro	oteins & amino acids:	Millon's test, Xanthop	proteic test, Biuret					
test.	ation of carbohydrata by A	throng mathed							
4. Esuin 5. Estim	ation of protein by Lowry's	method							
6 Chroi	natography-Separation of	amino acids by n	aper chromatography	and thin laver					
chron	natography (TLC).	ammo actas of p	aper emoniacography	una unin iajoi					
2.CELL	BIOLOGY:			(30HRS)					
1. To	study the structure of any p	rokaryotic and eukaryo	tic cell.						
2. Stu	dy of meiosis								
3. Stu	dy of mitosis.								
4. To	Staining of Sex chromatin (Barr body).							
5. Vi	tal Staining of Mitochondria	a with Janus green B.							
3. MOL	ECULAR BIOLOGY:	4 1		(30HRS)					
1. Est	fination of DNA by DPA m	ethod.							
2. ESI	anation of RNA by resorch	on method.	sig SDS page						
3. ER	lation separation and visual	β galose get electrophote lization of native DNA	from blood						
5 Iso	lation separation and visual	lization of RNA from h	lood						
6. An	polification of gene using Po	olymerase chain Reaction	on						
01111		, , , , , , , , , , , , , , , , , , ,							
4. MICH	ROBIOLOGY:			(30HRS)					
1. To	isolate the mitochondria fro	om the given sample.		× /					
2. Iso	lation of bacteria from wate	r/soil samples, colony	purification.						
3. Inc	oculation, Purification technic	iques: Serial dilution, p	our plate and streak pla	ate method.					
4. Identification of isolated bacteria: Gram staining other staining methods, metabolic									

characterization.

- 5. Sensitivity of various microorganisms (bacteria and fungus) towards Antibiotic/Antifungal agents.
- 6. Growth curve of microorganisms.

MAPPED CO's WITH PO's & PSO's

	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4
CO1									
CO2									
CO3									

Course Created by: